Abstract

Temperate forests in northeast Asia are crucial to maintaining biodiversity conservation and ecological security. Under the background of global warming and drought, it is of great significance to study the special indicator effect of tree growth on climate change. Dendrochronological analysis ofdifferent tree species in the same community under climate change can provide valuable information for the adaptive potential of tree species and the species-specific growth indications. Here, we compared the radial growth patterns of 13 co-occurring tree species in a temperate forest community in northeast China. Pearson correlation and moving interval analysis were used to reveal the key climate factors affecting radial growth and the temporal stability of growth-climate relationships, respectively. Results showed that temperature and moisture played a key role in the radial growth of the 13 co-occurring tree species in northeast China. The radial growth of Pinus sylvestris var. mongolica, Picea koraiensis, and Ulmus davidiana increased significantly after rapid warming (around the 1980s), while the radial growth of Pinus koraiensis, Acer mono, and Betula platyphylla decreased slightly. The radial growth of almost all tree species (except P. koraiensis, A. mono, and B. platyphylla) had a positive indication of temperature, especially Juglans mandshurica, Fraxinus mandshurica, and U. davidiana. The precipitation in the early growing season (May to June) and the relative humidity in the growing season were positively correlated with the growth of most species. Coniferous and diffuse-porous tree species were more resistant and recovery to extreme droughts than semi-ring-porous and ring-porous species (except U. davidiana). The 13 co-occurring tree species, especially conifers, showed low resistance and high recovery to extreme temperature. The differences in the growth-climate relationships among different species may be related to wood properties and ecological habits. If the climate continues to warm, coniferous trees will suffer the most serious impact, so they need protection most. Our results highlight that differentiated strategies are needed for the management and restoration of different tree species due to the species-specific indications of climate warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.