Abstract

Roots and rhizomes of seagrass play an important role in coastline zone by anchoring the substrate firmly which prevent resuspension and also controlling sediment biogeochemistry. The aim of this study was to compare the physical and chemical differences of sediments for 3 seagrass species, which have different root morphology between summer (February 2013) and the monsoon month (September 2013). Seven seagrass communities were studied and are: the mono stand of Halophila ovalis, Thalassia hemprichii, and Cymodocea rotundata, the mixed patches of H. ovalis with T. hemprichii, H. ovalis with C. rotundata, and T. hemprichii with C. rotundata and the mixed patches of 3 seagrass species. The roots of seagrasses were the main driver of differences in sediment properties; the branched, long root species, C. rotundata, showed an increasing redox potential by means of oxygen releasing from their roots. The unbranched, long root with dense root hair species, T. hemprichii, tended to cause more poorly sorted sediments. The carbon storage was also estimated and results showed a trend of higher organic carbon density was in the multispecific patches, the mono specific patches and bare sand, respectively. Season also influenced the sediment properties; high wave action in the monsoon stirred up the sediments, this led to lower organic carbon density and high redox potential. Our results suggest that the roots of seagrass species both increase and decrease sediment properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.