Abstract
AbstractBemisia tabaci (Gennadius) is a rapidly evolving species complex, and is small in size and difficult to identify quickly and accurately. For the accurate identification and effective prevention of this species, the specific PCR method based on the mitochondrial DNA cytochrome oxidase subunit I (mt DNA COI) gene was used in the present study to evaluate rapid molecular detection technological applications for Mediterranean (MED) species. The MED was targeted and whitefly species from different regions were used as references. Fragments of the mt DNA COI gene of the MED and other closely related species were amplified with universal primers. Species‐specific mitochondrial DNA cytochrome oxidase subunit I (SS‐COI) primers BQLF/BQLR and BQJF/BQJR were designed from variable sites of MED and other whitefly species partial COI gene sequences. Subsequently, the lengths of target fragments were amplified by two pairs of SS‐COI primers. Meanwhile, the accuracy, specificity and sensitivity of SS‐COI primers were determined using various life stages of the MED and other related species collected from different locations. The primer pairs BQLF/BQLR and BQJF/BQJR generated 334 bp and 483 bp amplified fragment length respectively. Accuracy test results showed that primers can detect the MED single‐head adults and also accurately detect single‐egg and first instar, second instar and third instar nymphs, MED pupae, etc. Specific detection results demonstrated that the primers were able to amplify the MED but not the following species/populations: Middle East‐Asia Minor 1 (MEAM1), Asia I, Asia II 1, Asia II 6 and Asia II 7, Aleurocanthus spiniferus (Quaintanca), A. camelliae, Siphoninus phillyreae, Aleuroclava rhododendri, A. thysanospermi, Aleurolobus taonabae, Dialeurodes citri and Trialeurodes vaporariorum (Westwood) in different areas. Sensitivity detection results showed that primers can detect the minimum threshold of 2,160 pg/μl and 1.38 pg/μl, respectively (equivalent to 1/1280 and 1/2000000 adult). This technique solves the problem that MED cannot be identified based on morphology. This method simultaneously adopted SS‐COI PCR technological applications that improved detection accuracy and saved detection time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.