Abstract

Hermaphroditic lumbricid Eisenia sp. earthworms are ubiquitous and highly resistant to a variety of environmental stressors, including heavy metals. Among the progeny of laboratory mated inter-specific pairs of Eisenia fetida (Ea) and Eisenia andrei (Ef) there are fertile Ha hybrids derived from Ea ova fertilized by Ef spermatozoa and very rare sterile Hf hybrids from Ef ova fertilized by Ea spermatozoa. The aim of the first part of the experiment was to compare the life traits and whole body accumulation of cadmium in adult earthworms from genetically defined Ea, Ef and their hybrids (Ha) exposed for four weeks to commercial soil either unpolluted (control) or cadmium-spiked leading to moderate (M) or high (H) soil pollution (M = 425 and H = 835 mg kg−1 dry soil weight). Such exposure impaired cocoon production but not affected earthworm viability despite the massive Cd bioaccumulation in the whole earthworm bodies reaching at M and H groups 316–454, 203–338, 114–253, and 377–309 mg kg−1 dry body weights of Ea, Ef1, Ef2, and Ha, respectively, surprisingly reaching maximum accumulation quantities in hybrids. The second part of the experiment aimed to investigate cadmium-related defense mechanisms at transcriptomic level in coelomocytes non-invasively extruded from coelomic cavities of the new sets of Ea, Ef, Ha, and Hf earthworms exposed to Cd in microcosms for 0 days (control), 2 days, and 7 days (M = 425 mg kg−1). Expression level of stress-induced Cd-metallothionein (mt) and superoxide dismutase (sod) were gradually up-regulated, while the immune-connected lysenin (lys) was rapidly down-regulated; the expression of glutathione S-transferase (gst) and phytochelatin synthase (pcs) remained unaffected. Mt and sod gene up-regulation and lys gene down-regulation were especially pronounced in Ea-derived hybrids. In sum, capacity of cadmium bioaccumulation and detoxification mechanisms is more efficient in interspecific hybrids than in the pure Ea and Ef species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call