Abstract

Aquatic macrophyte species richness (SR) was examined at 430 sites in the central Canadian region in relation to water body type, bottom substrate and 8 water chemistry parameters. SR was highest in rivers and lakes, intermediate in creeks, and lowest in ponds. The highest values occurred where granitic bedrock, highly organic substrates or sand predominated. SR was significantly inversely correlated in the study area as a whole with 7 of the water chemistry parameters; of these, total alkalinity was the most important. However, the relative importance of the respective parameters differed for various water body types. The relationship between SR and phosphorus was positive in ponds, but negative for all other water body types. Stepwise sultiple regression analysis identified phosphorus, total alkalinity and dissolved organic matter as important factors in ponds; sulphate, total alkalinity and chloride in lakes, and sulphate and phosphorus in lotic habitats. Log transformations improved the correlations for some variables. However, the water chemistry parameters examined accounted for less than half of the total variability in SR. Apparently SR depends on many different factors, including surface areaand bottom type, whose relative contributions vary with situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.