Abstract

Accompanying with increases in vehicle population and gasoline consumption, gasoline evaporation accounted for an enlarged portion of total volatile organic compound (VOC) emissions in China, raising increasing environmental concerns especially in megacities. In this study, an intensive sampling campaign was performed in a gasoline service station, to reveal emission characteristics, environmental and health impacts of VOCs. It was strikingly found that 24 % of air samples exceeded the national standard of 4 mg/m3 for non-methane hydrocarbons (NMHCs) on the boundary of the station, with the equipment of Stage I and II controls. VOC groups and species profiles showed that alkanes dominated total VOCs. As typical markers of evaporative loss of gasoline, C4–5 species (i-pentane, n-pentane and n-butane) as well as methyl tert-butyl ether (MTBE) accounted for 49.6 % of VOCs. Species profile and diagnostic ratios indicated the prominent contribution of gasoline evaporative losses from refueling or breathing processes, as well as the interference of vehicle exhaust in the ambient air at the site. Intensive O3 production was reproduced by the photochemical box model, demonstrating that O3 formation was co-limited by both VOCs (especially trans-2-butene) and NOx. Inhalation health risk assessment proved that exposure to hazardous VOCs caused non-cancer risk (HQ = 3.08) and definitely posed cancer risks at a probability of 1.3 × 10−4 to workers. Remarkable health risks were mainly imposed by halocarbons, aromatics and alkenes, in which 1,2-dichloropropane caused the highest non-cancer risk (HQ = 1.3) and acted as the primary carcinogen (ICR = 5.1 × 10−5). This study elucidated the high unqualified rate in gasoline service stations after the implementation of latest standards in China, where new regulations targeted halocarbons and updates in existing vapor recovery systems were suggested for VOC mitigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.