Abstract

Climate change can affect species directly and indirectly by altering interactions between species within communities. These indirect effects can ramify through a community and affect many species, including some that may not have been directly affected by the perturbation. Identifying these chains of indirect effects is difficult, and most studies only follow indirect effects across two or three species. Here, we use a factorial field experiment to demonstrate that precipitation affects spotted aphids through a complex chain of indirect interactions that are mediated by other herbivores and a generalist predator. We experimentally simulated drought, which reduced water content in alfalfa plants. While water stress in alfalfa had no direct effect on spotted aphids, it lowered the population growth rate of pea aphids, another common alfalfa pest. Because ladybeetle predators were attracted to high pea aphid densities, predator densities were lower in drought treatments. Consequently, spotted aphid densities were released from top-down control (apparent competition) in drought treatments and reached densities three times higher than spotted aphids in ambient treatments with high pea aphid densities. Thus, drought affected spotted aphids in the interaction chain: drought --> alfalfa --> pea aphids --> predators --> spotted aphids. This result illustrates the lengthy path that indirect effects of climate change may take through a community, as well as the importance of community-level experiments in determining the net effect of climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call