Abstract

We quantified plant diversity patterns according to changes in species composition, floristic richness, and species diversity in various plant communities in the Shilin karst area (24°38′–24°58′N, 103°11′–103°29′E, altitude 1600–2203 m) of central Yunnan, China, in which the previous land use had been documented. Cluster analysis of floristic similarity of all the stands showed that plant species composition and diversity were primarily influenced by the legacies of land use (as coppices, pastures, and plantations). The DCA (detrended correspondence analysis) grouped 14 sampling transects into 3 plant communities, including a shrubland, a mixed deciduous and evergreen broad-leaved stand (secondary forest), and a premature semihumid evergreen broad-leaved stand (natural premature forest), along a disturbance gradient. We also analyzed Pinus plantations. While plant species diversity was particularly low in the Pinus plantation, stands developing (secondary forest) on former coppice sites were becoming increasingly similar to the natural premature forest. The results would indicate that vegetation and plant species diversity is more efficiently restored by letting degraded vegetation regrow rather than establishing plantations.

Highlights

  • There are 620,000 km2 of karst landforms in southwestern China, where various types of evergreen broad-leaved forests grow across a wide climatic range (Wu 1980)

  • From the floristic similarity dendrogram of 18 transects obtained by cluster analysis, the transects were classified into 4 community types: natural premature forest (NF), secondary forest (SF), shrubland (SL), and Pinus plantations (PP) (Figure 2A)

  • Natural premature forest was dominated by evergreen Cyclobalanopsis glauca, Neolitsea homilantha, Olea yunnanensis, and accompanied by deciduous Ilex macrocarpa, Pistacia weinmannifolia, and Carpinus mobeigiana, constituting a premature stage of a typical semihumid evergreen broad-leaved forest in central Yunnan

Read more

Summary

Introduction

There are 620,000 km of karst landforms in southwestern China, where various types of evergreen broad-leaved forests grow across a wide climatic range (Wu 1980). These karst ecosystems are known to be extremely vulnerable to erosion due to large-scale tree cutting, pasture creation, slash-and-burn agriculture, and collection of fuelwood (Cao et al 2003; Wang and Liu 2004; Zhang et al 2006). Previous studies of secondary forests have revealed that plant communities under various degrees of human disturbance can be considered spatially and temporally dynamic patches of vegetation, showing recovery toward the original natural vegetation (Wang et al 2007; Fukushima et al 2008; Tang et al 2010)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call