Abstract
Metabolic activation of the ethynyl substituent of the contraceptive steroid norethindrone to cause the loss of hepatic cytochrome P-450 and the formation of green pigments has been compared in vivo and in vitro in rat, hamster, guinea pig, rabbit, mouse and hen and with marmoset and human liver microsomal preparations in vitro. In vivo green pigment accumulation in the liver 4hr after the administration of norethindrone (100 mg/kg, i.p.) varied 60-fold between species. Male rat was the most active in this respect, the hen was the least active. The accumulation of green pigments in female rats was 27% that of male animals. This sex-dependent difference was not seen in male and female mice. Cytochrome P-450 destruction in vivo was also greatest in the male rat given norethindrone, whereas no loss was detected in the hen. In other species, however, the correlation between green pigment accumulation and cytochrome P-450 destruction was not particularly good. When liver microsomes were incubated with norethindrone and an NADPH generating system in vitro, the ranking order between species with respect to the initial rates of green pigment formation was similar to that based on the hepatic accumulation of these compounds found in vivo. Human liver microsomes showed initial rates of green pigment formation which were only 2% of that seen in the male rat. No destruction of human microsomal cytochrome P-450 caused by norethindrone could be detected. The HPLC elution profile of the green pigments produced in the liver following the administration of norethindrone differed between species. Hepatic microsomal preparations in contrast, at least with short incubation times, formed only one green pigment. Results suggest that further metabolism of either norethindrone or the green pigment, involving a cytosolic factor(s), results in the varied HPLC patterns seen in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.