Abstract

The conversion of testosterone to 5 alpha-dihydrotestosterone by prostate particulates from rats, dogs, and humans was investigated, and significant species differences were found with their pH profiles, affinities for 4-azasteroidal inhibitors, and sensitivities to mercuric sulfhydryl reagents. The pH optima for the rat (pH 7), the dog (pH 6), and the human (pH 5) enzyme are significantly different. Mersalyl acid and p-hydroxymercuribenzoate inactivate only the rat 5 alpha-reductase, but not the human or dog enzyme. The rank orders of potencies of 24 3-oxo-4-azasteroids to inhibit 5 alpha-reductases of the rat, dog, and human prostate are different. The variation of the 17 beta-functional groups of the inhibitors demonstrates clearly the species differences. Those inhibitors with a 17 beta-diethylcarbamoyl, 17 beta-diisopropylcarbamoyl, 17 beta-t-butylcarbamoyl, or 17 beta-secbutylcarbonyl functional group are approximately equipotent as inhibitors of the rat and human enzymes, whereas they are only 0.1-15% as potent as inhibitors of the dog enzyme. On the other hand, those inhibitors with a 17 beta-spiroether functional group are most potent as inhibitors of the rat enzyme, are 15-50% as potent as inhibitors of the dog enzyme, and are 0.2-0.4% as potent as inhibitors of the human enzyme. Those inhibitors with a 17 beta-n-octylcarbamoyl, 17 beta-(1-carboxyethyl), or 17 beta-(1-carboxy-3-butyl) functional group are 2-3 orders of magnitude less potent as inhibitors of the dog and human enzymes than as inhibitors of the rat enzyme. These results suggest that prostatic 5 alpha-reductases of rats, dogs, and humans are significantly different. In spite of the significant species differences in inhibitor affinities, where determined, inhibition of the rat, dog and human enzymes by these compounds is competitive with testosterone. These 3-oxo-4-azasteroids have a similar rank order of potency as inhibitors of 5 alpha-reductase in human normal, benign hyperplastic, and cancerous prostates, indicating that the inhibitor-binding sites of 5 alpha-reductase in the prostate in different pathological states are similar. The affinities of the 3-oxo-4-azasteroids for rat prostatic cytosol receptor were determined. Five of these 5 alpha-reductase inhibitors have no significant affinity for the androgen receptor, whereas others do have an affinity for the receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.