Abstract

The metabolism of benzo[c]chrysene (B[c]Ch) with various cytochrome P450 (CYP) enzymes including rat 1A1, 1A2, 2B1 and 2E1, human 1A1, 1A2, 2A6, 1B1, 3A4 and 2E1, mouse 1B1, and scup fish 1A1 expressed in Chinese hamster V79 cells has been investigated to clarify the role of individual enzymes in the regioselective oxidation of B[c]Ch and the species dependency. In six cell lines expressing individual CYP enzymes from four different species B[c]Ch was metabolized to several isomeric phenols and trans−dihydrodiols. However, cell lines expressing human 3A4, 2A6 and 2E1 or rat 1A2, 2B1 and 2E1 were metabolically in-competent towards B[c]Ch. Among the trans−dihydrodiols the 9,10-isomer could be detected in cells expressing human, rat and fish CYP 1A1 and to a minor extent in cells with human 1A2, but not in cells expressing human and mouse CYP 1B1. The latter two cell lines produced high amounts of the bay region 3,4-dihydrodiol, whereas the K-region 7,8-dihydrodiol was a minor metabolite. Oxidation of B[c]Ch to the 1,2-dihydrodiol could not be catalyzed by any of the CYP enzymes investigated except fish 1A1. Our results suggest that metabolic activation of B[c]Ch is initiated predominantly by CYP 1A1 to result selectively in the formation of fjord region 9,10-dihydrodiol 11,12-epoxides regardless of the species involved. The activation of B[c]Ch appears to be limited by a low regioselectivity for the 9,10-oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.