Abstract

BackgroundSpecies are fundamental units in biology, yet much debate exists surrounding how we should delineate species in nature. Species discovery now requires the use of separate, corroborating datasets to quantify independently evolving lineages and test species criteria. However, the complexity of the speciation process has ushered in a need to infuse studies with new tools capable of aiding in species delineation. We suggest that model-based assignment tests are one such tool. This method circumvents constraints with traditional population genetic analyses and provides a novel means of describing cryptic and complex diversity in natural systems. Using toad-headed agamas of the Phrynocephalus vlangalii complex as a case study, we apply model-based assignment tests to microsatellite DNA data to test whether P. putjatia, a controversial species that closely resembles P. vlangalii morphologically, represents a valid species. Mitochondrial DNA and geographic data are also included to corroborate the assignment test results.ResultsAssignment tests revealed two distinct nuclear DNA clusters with 95% (230/243) of the individuals being assigned to one of the clusters with > 90% probability. The nuclear genomes of the two clusters remained distinct in sympatry, particularly at three syntopic sites, suggesting the existence of reproductive isolation between the identified clusters. In addition, a mitochondrial ND2 gene tree revealed two deeply diverged clades, which were largely congruent with the two nuclear DNA clusters, with a few exceptions. Historical mitochondrial introgression events between the two groups might explain the disagreement between the mitochondrial and nuclear DNA data. The nuclear DNA clusters and mitochondrial clades corresponded nicely to the hypothesized distributions of P. vlangalii and P. putjatia.ConclusionsThese results demonstrate that assignment tests based on microsatellite DNA data can be powerful tools for distinguishing closely related species and support the validity of P. putjatia. Assignment tests have the potential to play a significant role in elucidating biodiversity in the era of DNA data. Nonetheless, important limitations do exist and multiple independent datasets should be used to corroborate results from assignment programs.

Highlights

  • Introduction and key toChinese species of toad-headed agamids

  • This evidence suggests established reproductive isolation between the clusters, and they should be recognized as distinct species, i.e. P. vlangalii and P. putjatia, according to the biological species concept

  • The results from the assignment tests and phylogenetic analyses support the validity of P. putjatia as being a distinct species

Read more

Summary

Introduction

Introduction and key toChinese species of toad-headed agamids (genus Phrynocephalus). Species are fundamental units in biology, yet conceptually defining them has been a difficult task owing to the complexity and continuity of the speciation process itself and the diversity of reproductive modes among organisms. Attempts to resolve this debate have lead to the proliferation of different species concepts, most of which embody important aspects of the speciation process but lack a Methods of delineating species are numerous and can be grouped into what have been deemed 'non tree-based' and 'tree-based' methods [5]. Such isolation can be directly tested occasionally, most methods infer reproductive isolation by indirectly estimating gene flow within and between hypothesized species

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.