Abstract

Coalescent model–based methods for phylogeny estimation force systematists to confront issues related to the identification of species boundaries. Unlike conventional phylogenetic analysis, where species membership can be assessed qualitatively after the phylogeny is estimated, the phylogenies that are estimated under a coalescent model treat aggregates of individuals as the operational taxonomic units and thus require a priori definition of these sets because the models assume that the alleles in a given lineage are sampled from a single panmictic population. Fortunately, the use of coalescent model–based approaches allows systematists to conduct probabilistic tests of species limits by calculating the probability of competing models of lineage composition. Here, we conduct the first exploration of the issues related to applying such tests to a complex empirical system. Sequence data from multiple loci were used to assess species limits and phylogeny in a clade of North American Myotis bats. After estimating gene trees at each locus, the likelihood of models representing all hierarchical permutations of lineage composition was calculated and Akaike information criterion scores were computed. Metrics borrowed from information theory suggest that there is strong support for several models that include multiple evolutionary lineages within the currently described species Myotis lucifugus and M. evotis. Although these results are preliminary, they illustrate the practical importance of coupled species delimitation and phylogeny estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.