Abstract

To reveal the connectional specialization of the Broca's area (or its homologue), voxel-wise inter-species and individual differences, and inter-hemispheric asymmetry were respectively inspected in humans and macaques at both whole-brain connectivity and single tract levels. It was discovered that the developed connectivity blueprint approach is able to localize connectionally comparable voxels between the two species in Broca's area, whereas the quantitative differences between blueprints of locationally or connectionally corresponding voxels enable us to generate inter-hemispheric, inter-subject, and inter-species connectional variabilities, respectively. More importantly, the inter-species and inter-subject variabilities exhibited positive correlation in both two primates, and relatively higher variabilities were detected in the anatomically defined pars triangularis. By contrast, negative relationship was identified between the inter-species variability and hemispheric asymmetry in human brain. In particular, relatively higher asymmetry was revealed in the anatomically defined pars opercularis. Therefore, our novel findings demonstrated that pars triangularis, as compared to pars opercularis, might be a more active area during primate evolution, in which the brain connectivity and possible functions of pars triangularis show relatively higher degree in species specialization, yet lower in hemispheric specialization. Meanwhile, brain connectivity and possible functions of pars opercularis manifested an opposite pattern. At the tract level, functional roles related to the ventral stream in speech comprehension were relatively conservative and bilaterally organized, while those related to the dorsal stream in speech production show relatively higher species and hemispheric specializations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call