Abstract

Knowing the genetic basis of the plant ionome is essential for understanding the control of nutrient transport and accumulation. The aim of this research was to (i) study mineral nutrient concentrations in a large and diverse set of Brassica napus, (ii) describe the relationships between the shoot ionome and seedling development, and (iii) identify genetic regions associated with variation of the shoot ionome. The plant material under study was a germplasm set consisting of 509 inbred lines that was genotyped by a 6K single nucleotide polymorphism (SNP) array and phenotyped by analyzing the concentrations of eleven mineral nutrients in the shoots of 30 days old seedlings. Among mineral concentrations, positive correlations were found, whereas mineral concentrations were mainly negatively correlated with seedling development traits from earlier studies. In a genome-wide association mapping approach, altogether 29 significantly associated loci were identified across seven traits after correcting for multiple testing. The associations included a locus with effects on the concentrations of Cu, Mn, and Zn on chromosome C3, and a genetic region with multiple associations for Na concentration on chromosome A9. This region was situated within an association hotspot close to SOS1, a key gene for Na tolerance in plants.

Highlights

  • Plant cells depend on the presence of nutritional elements, which fulfill a variety of functions, where elements act, amongst others, as regulators, cofactors, or structural components (Baxter, 2009)

  • The plant material under study was a germplasm set consisting of 509 inbred lines that was genotyped by a 6K single nucleotide polymorphism (SNP) array and phenotyped by analyzing the concentrations of eleven mineral nutrients in the shoots of 30 days old seedlings

  • MATERIALS AND METHODS We investigated a species-wide diversity set of B. napus, consisting of 509 inbreds, of which the genetic diversity and population structure had been characterized with 89 simple sequence repeat (SSR) markers as described by Bus et al (2011)

Read more

Summary

Introduction

Plant cells depend on the presence of nutritional elements, which fulfill a variety of functions, where elements act, amongst others, as regulators, cofactors, or structural components (Baxter, 2009). The composition of plant mineral nutrients and trace elements is referred to as the ionome (Salt et al, 2008). -called ionomics, aim to reveal knowledge about these functions and the networks controlling uptake, transport, and accumulation of elements. Ionomics have become of great interest in research due to its relevance in plant development and performance, where each nutrient plays a specific role. Ionomics approaches do address the question of quantifying nutrient concentrations and how ions interact with each other, which factors influence their uptake and accumulation, and how the ionome can serve as indicator for associated traits

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.