Abstract

We studied the variation of small-scale swimming behaviour in eight Bosmina cornuta and ten B. pellucida clones in response to key environmental factors to test whether swimming behaviour and genotypes are linked in non-Daphnia cladocerans. We quantified (1) the short-term responses to changes in temperature, light intensity and pH, (2) the response to long-term temperature acclimation, and (3) the pH-related survival rates. Vertical swimming activity S was quantified in cuvette experiments as crossings of a line at 2 cm height per individual an hour. S differed significantly among species and conspecific clones. At any temperature, light intensity and pH tested, B. cornuta (clone variation: 40-58 crossings/ind.- h) showed a higher vertical swimming activity than B. pellucida (clone variation: 25-48 crossings/ind.- h). A short-term change of water temperature (range tested: 10-25C) only affected S of B. cornuta, whereas that of B. pellucida remained unaltered. In contrast, S increased with rising temperature following long-term temperature acclimation (range tested: 10-20C) in both species. Swimming activity was inversely related to the light intensity (range tested: 60-60,000 lux), but decrease of activity was stronger in B. pellucida (44′ 12 crossings/ind - h) than in B. cornuta (50′ 40 crossings/ind.- h). Short-term changes of pH (range tested: 4-6) did not influence swimming activity in any species, although a prolonged exposure (24 h) to pH 4 was lethal. Thus, Bosmina showed behavioural responses which permit to distinguish between the species and which are related to their seasonal succession and distribution pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.