Abstract

The statistical model (log-normal model), niche models (Zipf model, broken stick mo-del, niche preemption model), and neutral model were used to fit the species-abundance distribution patterns based on the measurements of environmental factors and inventory data of trees with DBH≥1 cm in a 1.5 hm2 plot in the primary forest (PF) and a 1.5 hm2 plot in the secondary forest (SF). The results showed that species-abundance distribution was affected by habitat heterogeneity in Q. aliena var. acutiserrata forest. Topography had a predominant impact on the species-abundance distribution in PF. Species distribution was affected by both neutral and niche processes, with neutral process having a less prominent effect in large convexity habitats. While the neutral model was rejected by the K-S and Chi-square test in low convexity habitats, the species-abundance distribution satisfied the assumption of niche theory. Niche process and neutral process were equally important in the community in areas with steep slopes, while niche differentiation was the dominant in flat areas. In SF, the main factors affecting species distribution were soil nutrients. The niche process was the mainly ecological process affected species-abundance distribution in habitats with high soil available phosphorus, while the niche and neutral processes existed simultaneously in habitats with low soil phosphorus availability. There was a significant scale effect on the species-abundance distribution pattern of Q. aliena var. acutiserrata forests in Taibai Mountain. The niche and neutral processes could protect the species-abundance distribution at the 20 m×20 m scale in PF, while the niche process could explain the species-abundance distribution at the 40 m×40 m and 70 m×70 m scales. The niche and neutral processes combined acted on the species abundance distribution at the 20 m×20 m, 40 m×40 m and 70 m×70 m scales in SF, with niche process being more important than neutral process. Moreover, besides the scale and habitat heterogeneity, the species-abundance distribution patterns of Q. aliena var. acutiserrata forests differed significantly between primary forest and secondary forest under anthropogenic disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.