Abstract

This contribution reports the results of potentio- metric and Mossbauer investigations on the formation, stability, and structure of binary and ternary mono- and binuclear complexes of Sn 2? with three hydroxocarboxylic ligands (namely L = tartrate, malate, and citrate) and chlo- ride at T = 298.15 K in different ionic media and ionic strengths (0.15 and 1.00 mol dm -3 in NaCl(aq) and 1.00 mol dm -3 in NaNO3(aq)). The stability constants of various simple SniHjLki?j-kz) and mixed SniHjLkClli?j-kz-l) species obtained in the different experimental conditions are reported, and various speciation diagrams of the simple and mixed systems are shown in different conditions. The sequestering ability of the three ligands toward Sn 2? was assessed by means of the calculation of the pL0.5 parameter at different ionic strengths and in the different ionic media. The effect of the chloride anion on the stability of various species and on the sequestering ability of the investigated ligands toward Sn 2? was also evaluated. The structural results obtained by Mossbauer spectroscopy supported the speciation schemes obtained by the potentiometric investigations and indicated the possible trigonal bipyramidal arrangement of various Sn 2? /ligand species. Measurements at different temperatures were also performed in the case of citrate, in order to estimate the temperature dependence of the stability of these species. A modified version of the computer program STACO is briefly presented here for the first time and allows the simultaneous determination of the stability constants and the enthalpy changes of various species from potentiometric titrations at different temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call