Abstract

[MnIII/IV2(-O)2(terpy)2(OH2)2](NO3)3 (1, where terpy = 2,2':6'2' '-terpyridine) + oxone (2KHSO5 x KHSO4 x K2SO4) provides a functional model system for the oxygen-evolving complex of photosystem II that is based on a structurally relevant Mn-(-O)2-Mn moiety (Limburg, J.; et al. J. Am. Chem. Soc. 2001, 123, 423-430). In this study, electron paramagnetic resonance, ultraviolet-visible spectroscopy, electrospray ionization mass spectrometry, X-ray absorption spectroscopy, and gas-phase stable isotope ratio mass spectrometry were utilized to identify the title compounds in the catalytic solution. We find that (a) O2 evolution does not proceed through heterogeneous catalysis by MnO2 or other decomposition products, that (b) O atoms from solvent water are incorporated into the evolved O2 to a significant extent but not into oxone, that (c) the MnIII/IV2 title compound 1 is an active precatalyst in the catalytic cycle of O2 evolution with oxone, while the MnIV/IV2 oxidation state is not, and that (d) the isotope label incorporation in the evolved O2, together with points a-c above, is consistent with a mechanism involving competing reactions of oxone and water with a "MnV=O" intermediate in the O-O bond-forming step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.