Abstract

Analytical scanning and transmission electron microscopy, sequential chemical extraction, and pyrolysis–gas chromatography on solvent-extractable organic matter are used to provide both direct and indirect speciation of heavy metals and organic matter in sewage-suspended solids and in biofilms taken from an urban sewer in an emerging country. Compared to developed countries where the domestic activities represent the main source of heavy metal pollution in wastewater, the combined sewer system of an emerging country also integrates significant contributions originating from the private drinking water supply system (Zn, Cu, Cr, and Ni), industrial discharges (Cu, Mn), and road dust transported by street washing (Pb). The relative importance of those sources changes drastically over time as evidenced by the difference in metal levels recorded between weekday and weekend effluents. Nevertheless, sewer biofilms are found to provide a good averaging of contaminant loads and they can be used as environmental archives. The speciation study reveals the predominance of neoformed minerals such as sulfides and phosphates and highlights the strong biogeochemical dynamics that takes place within the sewer system. Electron microscope observations of heavy metal-bearing phases proved to be necessary to provide a consistent interpretation of chemical extraction results. The molecular characterization of the solvent-extractable organic matter from biofilms reveals the presence of classical fingerprints of domestic activity such as fecal sterols and detergents but also confirms a major contribution of petroleum by-products consistent with a traffic-related pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call