Abstract

Nickel is often a metal of interest in regulatory settings given its increasing prevalence in disturbed freshwaters and as a known toxicant to fish and algae. Dissolved organic matter (DOM) is a toxicity modifying factor for nickel and a ubiquitous water physicochemical parameter. This study investigated the effect of DOM concentration and source on the chronic toxicity of nickel to Chlorella sp. using three DOM at two concentrations (3.1 ± 1.8 and 12 ± 1.3 mg C/L). Nickel toxicity to Chlorella sp. was not strongly influenced by DOM concentration. In the absence of DOM, the 72-h EC50 for Chlorella sp. was 120 μg Ni/L. In the low DOM treatment, nickel toxicity was either unchanged or slightly increased (87–140 μg Ni/L) and unchanged or slightly decreased in the high DOM treatment (130–240 μg Ni/L). DOM source also had little effect on nickel toxicity, the largest differences in nickel toxicity occurring in the high DOM treatment. Labile nickel (measured by diffusive gradients in thin-films, DGT) followed strong linear relationships with dissolved nickel (R2 > 0.97). DOM concentration and source had limited effect on DGT-labile nickel. DGT-labile nickel decreased with increasing DOM concentration for only one of the three DOM. Modelled labile nickel concentrations (expressed as maximum dynamic concentrations, cdynmax) largely agreed with DGT-labile nickel and suggested that toxicity is explained by free Ni2+ concentrations. This study confirms that nickel toxicity is largely unaffected by DOM concentration or source and that both measured (DGT) and modelled (cdynmax and free Ni2+) nickel concentrations can explain nickel toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call