Abstract

It has been challenging to analyze inorganic arsenic (iAs) with anion exchange HPLC-Electrospray Ionization-Mass spectrometry (HPLC-ESI-MS), because arsenite (As(III)) is difficult to retain on column and the salts in mobile phase causes ionization suppression of iAs. To address these issues, a method has been developed involving the determination of arsenate (As(V)) with mixed mode HPLC-ESI-MS and the conversion of As(III) to As(V) for total iAs. As(V) was separated from other chemicals on Newcrom B, a bi-modal HPLC column involving anion exchange and reverse phase interaction. The elution employed a two-dimensional gradient, including a formic acid gradient to elute As(V) and a concurrent alcohol gradient to elute organic anions used in sample preparations. As(V) was detected by Selected Ion Recording (SIR) in negative mode at m/z = 141 with a QDa (single quad) detector. As(III) was quantitatively converted to As(V) by mCPBA oxidation and measured for total iAs. By replacing salt with formic acid in elution, the ionization efficiency for As(V) was greatly enhanced in ESI interface. The limit of detection (LOD) for As(V) and As(III) were 0.0263 μM (1.97 ppb) and 0.0398 μM (2.99 ppb), respectively. The linear range was 0.05–1 μM.The method has been used to characterize iAs speciation change in the solution and precipitation in a simulated iron-rich groundwater caused by air exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call