Abstract

A novel nonchromatographic speciation technique for ultratrace inorganic mercury (Hg(2+)) and methylmercury (CH(3)Hg(+)) in biological materials is developed and validated by electrolytic vapor generation (EVG) coupled with atomic fluorescence spectrometry (AFS). The studies show that CH(3)Hg(+) and Hg(2+) can be converted to Hg vapor efficiently on an l-cysteine modified graphite cathode, which has never been reported before. We observe that only Hg(2+) can be converted efficiently to Hg vapor at low current mode (0.2 A). While at high current mode (2.2 A), both CH(3)Hg(+) and Hg(2+) can be reduced efficiently. As a result, we successfully establish an exact and sensitive method based on the current control to detect mercury speciation for the first time. The factors of electrolytic conditions have been optimized, and the potential mechanism is discussed. Under the optimal conditions, the detection limits (3s) of Hg(2+) and CH(3)Hg(+) in aqueous solutions are 0.098 and 0.073 μg L(-1), respectively. The relative standard deviations for 6 replicate determinations of 2 μg L(-1) Hg are determined as 3.2% and 4.7% for Hg(2+) and CH(3)Hg(+). The accuracy of the method is verified through the analysis of certified reference materials (CRM, NRC-DORM-2), and the proposed method has been applied satisfactorily to the determination of mercury speciation in several seafood samples by calibration curve mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.