Abstract

A method has been developed for the speciation of trace dissolved Fe(II) and Fe(II) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry (ICPMS). Selective determination of Fe(III) in the presence of Fe(II) was made possible by on-line formation and sorption of the Fe(III)-pyrrolidinecarbodithioate (PDC) complex in a PTFE knotted reactor over a sample acidity range of 0.07-0.4 mol L(-1) HCl, elution with 1 mol L(-1) HNO3, and detection by ICPMS. Over a sample acidity range of 0.001-0.004 mol L(-1) HCl, the sum of Fe(III) and Fe(II), i.e., Fe(III + II), could be determined without the need for preoxidation of Fe(II) to Fe(III). The concentration of Fe(II) was obtained as the difference between those of Fe(III + II) and Fe(III). With a sample flow rate of 5 mL min(-1) and a 30-s preconcentration time, an enhancement factor of 12, a retention efficiency of 80%, and a detection limit (3s) of 0.08 microg L(-1) were obtained at a sampling frequency of 21 samples h(-1). The relative standard deviation (n = 11) was 2.9% at the 10 microg L(-1) Fe(III) level. Recoveries of spiked Fe(III) and Fe(II) in local tap water, river water, and groundwater samples ranged from 95% to 103%. The concentrations of Fe(III) and Fe(II) in synthetic aqueous mixtures obtained by the proposed method were in good agreement with the spiked values. The result for total iron concentration in the river water reference material SLRS-3 was in good agreement with the certified value. The method was successfully applied to the determination of trace dissolved Fe(III) and Fe(II) in local tap water, river water, and groundwater samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.