Abstract

AbstractThe use of ashes from municipal solid waste incineration as secondary building materials is an important pillar for the circular economy in Germany. However, leaching of potential toxic elements from these materials must be at environmentally acceptable levels. Normally, a three-month ageing period immobilizes most hazardous heavy metals, but antimony (Sb) and vanadium (V) showed previously unusual leaching. In order to clarify the mechanisms, we analyzed the Sb and V species in various bottom and fly ashes from municipal waste incineration by XANES spectroscopy. Antimony oxidizes from Sb(+ III) species used as flame retardants in plastics to Sb(+ V) compounds during waste incineration. However, owing to the similarity of different Sb(+ V) compound in the Sb K- and L-edge XANES spectra, it was not possible to accurately identify an exact Sb(+ V) species. Moreover, V is mainly present as oxidation state + V compound in the analyzed ashes. However, the coarse and magnetic fraction of the bottom ashes contain larger amounts of V(+ III) and V(+ IV) compounds which might enter the waste incineration from vanadium carbide containing steel tools. Thus, Sb and V could be critical potential toxic elements in secondary building materials and long-term monitoring of the release should be taken into account in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call