Abstract

A detailed study of the quaternary aqueous H+/H2VO4−/H2O2/L-(+)-lactate (Lac−) system has been performed at 25 °C in 0.150 M Na(Cl) medium, representing the ionic strength of human blood, using quantitative 51V NMR and potentiometric data (glass electrode). Data were evaluated with the computer program LAKE, which is able to treat combined EMF and NMR data. The pKa-value for lactic acid was determined as 3.653 ± 0.002. The error given is 3σ. In the ternary H+/H2VO4−/Lac− system, eight complexes were found in the pH region 1.1–10.9; only half of them are mononuclear. Owing to the fast reduction of vanadium(V) in acidic solutions and to the slow equilibria of the inorganic vanadates under certain conditions, the final model of this ternary system presented in the study is limited to pH > 3.1. Solutions, in which reduction occurred to any extent, were excluded from all calculations, hence the study is limited to vanadium(V). In the quaternary H+/H2VO4−/H2O2/Lac− system, seven complexes could be found in addition to all binary and ternary complexes over the pH region 2.1–10.0, only two of which were mononuclear. Equilibrium is fast, but significant decomposition of peroxide occurs in acidic solutions over very short time, limiting the final model to pH > 4. Chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. Simple biological tests were carried out to check the resistance of different peroxovanadate complexes (including the ones with Lac−) against human catalase and the results are being presented here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.