Abstract

The speciation and mobility of some selected trace metals (As, Cu, Mn, Pb and Zn) in sediments with depth was investigated in the Cam River-mouth (Vietnam) by collecting sediment cores and analysing porewater and sediment composition, complemented with single (ammonium-EDTA) and sequential (BCR 3-step) extractions and mineralogical analysis (XRD). All trace metals show overall decreasing trends with depth in porewater as a result of anthropogenic input in upper sediment layers. High porewater concentrations of As, Mn and Pb in oxic and suboxic sediment layers may result in groundwater pollution. Sediment-bound Pb and Mn dominate in the reducible and the acid-soluble fraction, respectively, while Cu and Zn distribute rather evenly between four extracted fractions. The porewater metal speciation, as predicted by a geochemical model Visual MINTEQ version 3.0, indicates that the toxicity of Cu, Mn, Pb and Zn (presented by the proportions of free metal ions) decreases with depth, while the toxicity of As increases when As(III) becomes more abundant. The dissolved concentrations of trace metals are not only controlled by the precipitation/dissolution of discrete hydroxide/oxide, carbonate and phosphate minerals, but also by sorption processes on major sorbents (i.e. As on goethite, and Mn and Zn on calcite and dolomite). Sulphide minerals do not show any control even in the anoxic zone most likely because of the low concentration of sulphur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call