Abstract

Two areas near derelict calciners in Cornwall (UK) were chosen to study the uptake of arsenic from arsenic-contaminated soil into indigenous plants (heather, Calluna vulgaris; blackberry, Rubus ulmifulmus; gorse, Ulex europaeus). With total arsenic concentrations in soil ranging from 1240 to 2860 mg kg−1 at Site 1 (Tuckingmill), no adverse effects on the growth of the plants studied were observed. Very low soil-to-plant transfer factors (0.01 to 0.03) were found although they were much higher when the extractable soil arsenic concentrations were taken into account (0.1 to 1.1). In the central dump area at Site 2 (Bissoe, 9.78% [w/w] arsenic in soil), the only plant to grow was heather, although it was severely impaired. However, heather was thriving at the edge of the dump where higher soil arsenic concentrations were found (10.32% [w/w]), indicating that arsenic is not a growth-limiting factor in itself. Soil-to-plant transfer factors in the range 2 × 10−5–9 × 10−4 confirm that arsenic is indeed effectively excluded from uptake, even taking into account extractable soil arsenic concentrations (9 × 10−4–1.2 × 10−2). Extraction of bioavailable arsenic from soil using 0.05 mol L−1 ammonium sulphate yielded recoveries from 1.18 to 3.34% of the total arsenic, predominantly in the form of arsenate. Extraction of arsenic and its metabolites from plants was achieved with water or a water/methanol mixture yielding recoveries up to 22.4% of the total arsenic, with arsenite and arsenate the predominant arsenic species and a minor fraction consisting of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide. The identity of the remainder of the non-extractable arsenic species still has to be revealed. Although the data suggest that higher plants synthesise organoarsenic compounds it cannot be excluded that symbiotic organisms have synthesised these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.