Abstract
A new method was developed to determine the nanoparticulate and ionic silver (Ag) species in bacteria (Escherichia coli, E. coli). By removal of the cell wall with lysozyme, the cell surface-adsorbed Ag species were separated from the intracellular Ag species, which were extracted by tetramethylammonium hydroxide and determined by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry (SEC-ICP-MS). The detection limit is 3 ng/107 CFU/mL (where CFU is colony-forming unit) for both silver nanoparticles (AgNPs) and ionic Ag(I) species. The cell wall-adsorbed Ag was calculated by subtracting the contents of the intra- and extracellular Ag from the total exposure dose of Ag, and therefore the biodistribution of Ag species was profiled. We then applied this strategy to quantitatively analyze extra- and intracellular Ag species in E. coli after respective exposure to Ag+ and 10 and 30 nm AgNPs at different effective concentrations (EC10, EC50, and EC90). Results showed that the intracellular and cell wall-bound Ag account for 5.98-15.21% and 25.13-64.43% of the exposed dose, respectively, and AgNPs could transform into complexed or free Ag+. Our method opens new avenues for the quantitative analysis of the uptake and biodistribution of nanoparticles and their transformation species in bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.