Abstract

AbstractAn inductively coupled plasma mass spectrometer (ICP‐MS) was used as a liquid chromatographic detector for the speciation analysis of thallium in environmental samples. In this study, ionic thallium species, namely Tl(I) and Tl(III) were well separated by reversed‐phase high performance liquid chromatography (RP‐HPLC) with a C8‐HPLC column as the stationary phase and 1 mmol L−1 tetrabutylammonium phosphate (TBAP), 2 mmol L−1 diethylenetriamine pentaacetic acid (DTPA) in 1% v/v methanol solution (pH 6) as the mobile phase. Effluent from the HPLC column was delivered to the nebulizer of the ICP‐MS for the determination of thallium. The separation was complete in less than 3 min. Detection limit was 0.002 μg L−1 for both Tl(I) and Tl(III) compounds based on peak height. The relative standard deviation of the peak areas for five injections of a mixture containing 1 μg Tl L−1 was better than 3.4%. The concentrations of Tl compounds were determined in standard reference materials, including NIST SRM 1643e Trace Elements in Water and NRCC NASS‐5 Open Ocean Seawater and water samples collected in Kaohsiung area, Taiwan. The HPLC‐ICP‐MS results of the reference samples agreed with the reference values. This method has also been applied to determine Tl(I) and Tl(III) compounds in custard apple (Annona squamosa) leaves collected from Chai‐shan Mountain, Kaohsiung and Taitung City, Taiwan. The thallium species were quantitatively leached from the leaves with a 5 mmol L−1 DTPA in 100 mmol L−1 ammonium acetate solution in an ultrasonic bath during a period of 30 min. The HPLC‐ICP‐MS result that was obtained after the analysis of leaves sample showed a satisfactory agreement with the total thallium concentration obtained by ICP‐MS analysis of completely dissolved sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call