Abstract

Stable isotopic composition of atmospheric nitrate (nitric acid (HNO3) + particulate nitrate (pNO3-)) provides a higher-order dimensional analysis of critical atmospheric components, enabling a process-level understanding of precursor emissions, oxidation chemistry, aerosol acidity, and depositional patterns. Current methods have not been evaluated for their ability to accurately speciate and determine nitrogen (δ15N) and oxygen (δ18O and Δ17O) isotope compositions for gaseous and particle phases. Suitability of a denuder-filter sampling system for the collection of speciated HNO3(g) and pNO3- for off-line concentration and isotopic determination was tested using both laboratory and field collections. Honeycomb denuders coated with either NaCl or Na2CO3 solutions were used to collect HNO3(g). Laboratory experiments found that both coating solutions quantitatively collected HNO3(g), with the Na2CO3 solution demonstrating a higher operative capacity (>1470 μg of HNO3; n = 25) compared to the NaCl solution (∼750 μg of HNO3; n = 25). The precision values for laboratory-tested HNO3(g) collections are ±0.6‰ and ±1.2‰ for δ15N and δ18O for the NaCl solution and ± 0.8‰ and ±1.2‰ for the Na2CO3 solution. Replicate (urban) samples indicate that the Na2CO3 solution is significantly less selective for HNO3(g) collection than the NaCl solution. Nylon filters were found to collect efficiently and retain laboratory-generated NaNO3 and NH4NO3 particles, with maximum standard deviations for δ15N and δ18O of ±0.3‰ and ±0.3‰, respectively. Field replicates, while predictably more variable, also show consistency for δ15N and δ18O of ±0.6‰ and ±1.3‰ for particulate species, respectively. Recommended methods for field collections of speciated HNO3(g) and pNO3- for isotopic measurements would best utilize the NaCl solution and Nylon filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.