Abstract

Abstract Ordinary electromagnetic (EM) fields possess relatively simple U1gauge symmetry, and their angular momentum is analogous to that of spin1 particles whose likecharges attract and unlike charges repel. This manifests in coulomb repulsion between free electrons or ions and coulomb attraction between free electrons and ions. By contrast, angular momentum of SU(2) fields that describe the shortrange Weak Nuclear Force in atomic nuclei is analogous to that of spin2 particles whose likecharges attract. So, free ions that enter such small SU(2) field regions attract each other until their separation becomes so small that their fusion occurs. In this respect, Barrett has derived EM fields with the same SU(2) gauge symmetry and spin2 angular momentum as SU(2) matter fields in atomic nuclei. It is conceivable, therefore, that SU(2) EM fields might cause fuel ions inside nuclear fusion reactors to attract (rather than repel) each other. This paper, therefore, explores the possibility of SU(2) EM fields reducing the electrical compression energies these SU(2) EM fields must exert on fuel ions before fusion of the ions by the SU(2) matter fields of the weak nuclear force then occurs. A specific conditioning of U(1) EM field energy into SU(2) EM field energy was selected; a given type of fusion was assumed; and preliminary, parametric estimates of input electrical energy reductions were made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call