Abstract

Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale invivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call