Abstract

Given a projective family of semi-stable curves over a complete discrete valuation ring of characteristic p>0 with algebraically closed residue field, we construct a specialization functor between the category of continuous representations of the pro-étale fundamental group of the closed fibre and the category of stratified bundles on the geometric generic fibre. By Tannakian duality, this functor induces a morphism between the corresponding affine group schemes. We show that this morphism is a lifting of the specialization map, constructed by Grothendieck, between the étale fundamental groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.