Abstract

Species with broad ecological amplitudes with respect to a key focal resource, niche generalists, should maintain larger and more connected populations than niche specialists, leading to the prediction that nucleotide diversity will be lower and more subdivided in specialists relative to their generalist relatives. This logic describes the specialist-generalist variation hypothesis (SGVH). Some outbreeding species of Caenorhabditis nematodes use a variety of invertebrate dispersal vectors and have high molecular diversity. By contrast, Caenorhabditis japonica lives in a strict association and synchronized life cycle with its dispersal host, the shield bug Parastrachia japonensis, itself a diet specialist. Here, we characterize sequence variation for 20 nuclear loci to investigate how C. japonica's life history shapes nucleotide diversity. We find that C. japonica has more than threefold lower polymorphism than other outbreeding Caenorhabditis species, but that local populations are not genetically disconnected. Coupled with its restricted range, we propose that its specialist host association contributes to a smaller effective population size and lower genetic variation than host generalist Caenorhabditis species with outbreeding reproductive modes. A literature survey of diverse organisms provides broader support for the SGVH. These findings encourage further testing of ecological and evolutionary hypotheses with comparative population genetics in Caenorhabditis and other taxa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call