Abstract

In this research, a special wettable copper mesh with superhydrophobicity and superoleophilicity properties is reported using a low-cost, eco-friendly, rapid, and scalable synthesis method. Hot water treatment (HWT) method is used to integrate the micro-textured copper mesh surface with a nanoscale roughness to achieve a hierarchical micro-nano structured surface. The surface energy of the nanoscale roughened copper mesh reduced by coating the hot water treated mesh with polymer ligands containing thiol or fluorine functional groups of low energy. Surface morphology characterization showed the formation of copper oxide nanostructures on the mesh surface by hot water process performed at 95 °C and under a low dissolved oxygen condition. X-ray diffraction patterns reveal the development of stable, uniformly distributed, and compactly arranged, cubic and plate-like nanostructures of cuprous oxide (Cu2O) on the copper mesh surface. The surface wettability of the as-prepared copper mesh was assessed by contact angle (CA) measurement for water and several oils and organic solvents. CA values showed the formation of special wettable copper mesh surface with superhydrophobic property with water contact angle of about 157° and superoleophilic property with oil contact angle as low as 0°. In addition, the effect of the mesh’s geometry on the wetting property was examined through correlations between wire diameter, pore size, and optimal values for the highest water CA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.