Abstract
Plasmonics enables a wealth of applications, including photocatalysis, photoelectrochemistry, photothermal heating, optoelectronic devices, and biological and chemical sensing, while encompassing a broad range of materials, including coinage metals, doped semiconductors, metamaterials, 2D materials, bioconjugates, and chiral assemblies. Applications in plasmonics benefit from the large local electromagnetic field enhancements generated by plasmon excitation, as well as the products of plasmon decay, including photons, hot charge carriers, and heat. This special topic highlights recent work in both theory and experiment that advance our fundamental understanding of plasmon excitation and decay mechanisms, showcase new applications enabled by plasmon excitation, and highlight emerging classes of materials that support plasmon excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.