Abstract

A technique for high temperature low cycle fatigue testing of metallic materials has been developed, to determine fatigue behaviour through the testing of miniature specimens. The miniature specimen geometry was specifically designed, such that it could be manufactured from a small volume of material removed by chain-drilling extraction. An extensometry method to measure and control strain at the specimen shoulders during testing was adopted. This was undertaken to minimise the deleterious contact effects that can occur via extensometry attached at the gauge length of specimens, hence leading to premature failure and inaccurate fatigue data. By the application of this technique, the high temperature low cycle fatigue behaviour of 2.25Cr-1Mo steel was successfully characterised at 540 °C, under a fully reversed strain-controlled regime. The fatigue properties of the steel obtained from testing miniature specimens were shown to correlate well with existing literature for the material under comparable conditions, as determined by the testing of conventional standard-sized specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.