Abstract

ABSTRACTExtending the notions of inverse transversal and associate subgroup, we consider a regular semigroup S with the property that there exists a subsemigroup T which contains, for each x∈S, a unique y such that both xy and yx are idempotent. Such a subsemigroup is necessarily a group which we call a special subgroup. Here, we investigate regular semigroups with this property. In particular, we determine when the subset of perfect elements is a subsemigroup and describe its structure in naturally arising situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.