Abstract

Data on the special salt effect in monomolecular heterolysis reactions (Sn1, E1, solvolysis) are summarized and critically analyzed. The mechanisms suggested by Ingold, Winstein, Dannenberg, Okamoto, and the authors are discussed. The special salt effect is due to the effect of a salt on the contact ion pair of a substrate. Quadrupoles and ion triplets are formed. In the limiting step of the heterolysis, a contact ion pair interacts with a solvent cavity. Association of salts with a contact ion pair increases the lifetime of the cationoid and the probability of its contact with the solvent cavity. A spatially separated ion pair is formed, which rapidly transforms into a solvation-separated ion pair, which, also rapidly, yields reaction products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.