Abstract
In this paper, we present an explanation of several fundamental tests of special relativity from the perspective of the frame co-moving with a rotating observer. The solution is of great interest for real-time applications because Earth-bound laboratories are inertial only in approximation. We present the derivation of the Sagnac, Michelson–Morley, Kennedy–Thorndike and the Hammar experiments as viewed from the Earth-bound uniformly rotating frame or, as in the case of the Mossbauer rotor experiments, from the perspective of the rotating device. An entire section is dedicated to length/time measurement and to clock synchronization and another one to the Doppler effect and aberration on uniformly rotating platforms. This paper brings new information in the following areas: – new approach for clock synchronization on a rotating platform – new approach for length measurement in rotating frames – new explanation of the Doppler effect and of the Mossbauer rotor experiment – new explanation of the Kennedy–Thorndike experiment. The main thrust of this paper is to give a consistent explanation of various tests of special relativity as judged from the perspective of the rotating frame of the experimental setup. In addition, we correct certain misconceptions relative to clock synchronization and length measurement that have survived a long time in the specialty literature. A special chapter is dedicated to the derivation of the Doppler effect and of aberration in rotating frames. It is shown that such derivation is far from being trivial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.