Abstract

The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density $\rho(r) \propto r^{- \alpha}$ and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfv\'en velocity on the stellar surface, and follows a simple scaling relation $v_{\rm mag} \propto {v_{\rm A}}^{1/2}$. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation $\Gamma_{\rm sh} \propto r_{\rm sh}$, where $\Gamma_{\rm sh}$ is the Lorentz factor of the plasma measured at the shock surface $r_{\rm sh}$. Purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call