Abstract

The special quasirandom structure (SQS) approach is a successful technique for modelling of alloys, however it breaks inherently the point symmetry of the underlying crystal lattice. We demonstrate that monocrystalline and polycrystalline elastic moduli can scatter significantly depending on the chosen SQS model and even on the supercell orientation in space. Also, we demonstrate that local disturbances, such as vacancies or interfaces change the SQS configuration in a way, that significantly affects the values of the calculated physical properties. Moreover, the diversity of local environments in random alloys results in a large variation of the calculated local properties. We underline that improperly chosen, generated or handled SQS may result in erroneous theoretical findings. The challenges of the SQS method are discussed using bulk Ti0.5Al0.5N alloy and TiN/Ti0.5Al0.5N multilayer as model systems. We present methodological corrections for the mindful application of this approach in studies of advanced properties of alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call