Abstract

This paper studies short-range order (SRO) in the semiconductor alloy (GaN)$_{1-x}$(ZnO)$_x$. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of Special Quasi-ordered Structure (SQoS). Subsequent DFT calculations reveal dramatic influence of SRO on the atomic, electronic and vibrational properties of the (GaN)$_{1-x}$(ZnO)$_x$ alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn3$d$-N2$p$ repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Inclusion of lattice vibrations stabilizes the disordered alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.