Abstract

The kinematic theory of X-ray diffraction was applied to the study of the most intense Bragg’s reflection observed for carbon onions. It was shown that the agreement with experimental data was attained using a convolution of a Lorentzian contour with regard to the distribution of onion sizes and of an asymmetric contour taking into account the fluctuations of intershell distances inside the particle. It can be assumed that the observed scatter in intershell distances indicates a nonequilibrium state of the internal configuration of onion shells. It appeared to be possible to estimate not only the average onion size, which exceeds the average size of pristine nanodiamonds that are used for onion preparation by annealing, but their size distribution function as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.