Abstract
AbstractA ringRis said to be an absolute subretract if for any ringSin the variety generated byRand for any ring monomorphismffromRintoS, there exists a ring morphismgfromStoRsuch that gf is the identity mapping. This concept, introduced by Gardner and Stewart, is a ring theoretic version of an injective notion in certain varieties investigated by Davey and Kovacs.Also recall that a special principal ideal ring is a local principal ring with nonzero nilpotent maximal ideal. In this paper (finite) special principal ideal rings that are absolute subretracts are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.