Abstract

One of the ways to improve the resilience of buildings in the event of failure of the bearing structure or emergency, seismic effects is a more complete account of the behavior of elements and their mates at short-term action of loads and dynamics of change of the scheme of the bearing system of the building. To do this, it is advisable to allow more cracks to open, the development of deflections and partial destruction of some sections, which contradicts the current criteria for the first and second limit states that ensure the operational suitability of structures and buildings. Therefore, it is necessary to introduce specific standards of a special limit state for structures. A special limit state is the stage of operation of the structure after reaching the load-bearing capacity for the first and the deformation limits for the second limit states. Exceeding this state, in which the structures do not fully meet the functional requirements, leads to their collapse. The implementation of this limit state is most appropriate in load-bearing systems with a high degree of static indeterminability and constructive interaction of all bearing elements. The introduction and consideration of a special limit stress-strain state of reinforced concrete structures make it possible to detect significant strength and deformation reserves, even after significant fragmentation of the compressed concrete zone and, as a result, reducing the working section of the structure. As the main criteria of a particular limit state for reinforced concrete structures, it is recommended to adopt: the ultimate deformations of compressed concrete and tensile reinforcement with higher values than permissible under normal conditions; as well as the deflections of elements, provided that the minimum allowable length of the zone of bearing and anchorage of reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.