Abstract

With the massive participations of worldwide developers and users as well as enabling collaboration and social networks, Web 2.0 is significantly influencing the development of the Web, Semantic Web and Grid by aiming at a powerful and harmonious interconnection environment. The study of the future Web concerns the exploration of the laws among large-scale and expanding resources such as the formation of community and effective knowledge sharing, the semantics facilitating various interactions (between human, between machines and between human and machine) the scalable infrastructure and applications. This special issue is to reflect the up-to-date progresses of research on the future Web. It contains eight papers selected mainly from the third International Conference on Semantics, Knowledge and Grid 1, which emphasizes on promoting cross-area research. Web mining and community discovery play an important role in supporting intelligent Web applications. Zhang and Xu 2 introduce a set of Web mining methods based on various available information on the Web, including Web document contents, hyperlink analysis, user access logs and semantic analysis. Several key Web clustering algorithms are studied, including a latent linkage information algorithm for finding relevant pages and a Web page clustering algorithm based on the defined concept of Web page correlation. Pierce et al. 3 introduce the application of Web 2.0 in the following scenarios: client-side JavaScript libraries for building and composing Grid services, integrating server-side portlets with ‘rich client’ AJAX tools and Web services for analyzing a global positioning system's data, building and analyzing folksonomies of scientific user communities through social bookmarking, and applying microformats and GeoRSS to problems in scientific metadata description and delivery. The future Web and Grid need to combine different models and techniques to provide users with more accessible services and resources. Dillon et al. 4 discuss three important computing paradigms including service-oriented computing, Grid computing and Web 2.0. An abstracted distributed computing model is introduced and a Grid architecture GRIDspace is discussed. Semantic Web plays an important role in making the description of Web resources more machine-understandable, which can be used as the basic data model and query model to support heterogeneous resource management on Semantic Grid. Babik and Hluchy present an architecture to support efficient resource description, query processing and logic reasoning based on a subset of Semantic Web language 5. The system combines a tableau algorithm with a resolution-based reasoning method to support scalable queries on large-scale instances with complex schema for resource management on Semantic Grid. Ontology technologies are promising and enabling tools for building an intelligent Web. Ungrangsi et al. propose an ontology retrieval framework for the information sharing on the next-generation Web 6. A similarity ranking method is proposed to evaluate the semantic query on ontology modeled by XML declarative description language. Logic reasoning is an important tool to utilize knowledge information. Li et al. propose a case-based reasoning method with adaptive learning rules 7. Resource Space model and Semantic Link Network model are used for efficient resource management and reuse. By dynamically updating the reasoning rules, the reasoning results are improved. Semantics-rich queries are also important for databases that are to manage heterogeneous data objects. Li et al. 8 presents a semantic model for multimedia database systems. A semantic schema description framework called MediaView is provided for users to describe the data model of a multimedia database with more formal semantics. The MediaView model allows users to design a dynamic and evolving object-oriented schema for multimedia data objects, upon which a multimedia recipe database is developed. The future Web faces many problems from architectural solution to scalable and extensible data model. Sun et al. propose a system architectural framework with a semantic object model for massive information and knowledge sharing on the future Web 9. It incorporates peer-to-peer (P2P) computing techniques into the system platform where an object-oriented semantic model is provided for users to describe resources in a more flexible and extensible way. The basic system architecture and related semantic object model are suggested as the scalable semantic model for the future Web. We trust this special issue will make a significant contribution to the development of the future interconnection environment as described in 10. Finally, we would like to take this opportunity to thank the chief editor, publisher, authors and reviewers whose strong support made this special issue possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call