Abstract

This special issue onmultidimensional signal processing applications covers a broad range of methodologies and algorithms for spatially extended configurations of sensors and emitters for various purposes and applications. The spectrum of the typical wavelengths for these applications ranges from very short ones in electron transmission microsopy to visibile light, up to radio frequencies and further to sound waves in the audio range suitable for human perception. In spite of the diversity of the underlying physical principles there are similarities in the arising problems. Consequently also some of the approaches to the processing of the resulting sensor or emitter signals are shared between these applications. One common problem is the detection of drift and translation between images acquired by electron transmission microsopy and conventional cameras. Also the detection of motion in video sequences falls into this category. Another set of problems is concerned with the detection of the direction of a source of either electromagnetic or sound waves using suitable receiver arrays. But the situation may also be turned around by forming directed wave fronts from loudspeaker arrays to produce sound fields with certain spatial requirements. This set of seven papers shows thatmodernmultidimensional signal processing overcomes the traditional separation of image processing and audio processing. The presented methods and algorithms prescind from plain processing of available sensor or emitter signals. Instead the focus lies on physical processes andmathematical foundations underlying all applications. The paper A comparison between minimum variance control and other online compensation methods for specimen drift in transmission electron microscopy by A. Tejada and A.J. den Dekker presents an online method to reduce image blurring by specimen drift dur-

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.