Abstract

Extracting a small number of relevant features for the task, i.e., feature selection, is often a crucial step in supervised learning problems. Sparse linear regression provides a fast and convenient option for feature selection, where regularization facilitates reducing the weight parameters of irrelevant features. However, the regularization also induces undesirable shrinkage in the weights of relevant features.Here, we propose Bayesian masking (BM) in order to resolve the trade-off problem between sparsity and shrinkage. Our strategy is not to directly impose any regularization on the weights; instead, BM introduces binary latent variables, called masking variables, into a regression model to keep the sparsity; each feature and sample has a binary variable whose value determines if the feature is masked or not at the sample. We derive a variational Bayesian inference algorithm for the augmented model based on the factorized information criterion (FIC), a recently-proposed asymptotic approximation of the marginal log-likelihood. We analyze the one-dimensional estimators of Lasso, automatic relevance determination (ARD), and BM, and thus show the superiority of BM in terms of the sparsity-shrinkage trade-off. Finally, we confirm our theoretical analyses through experiments and, demonstrate that BM achieves higher feature selection accuracy compared with Lasso and ARD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.